Wednesday, 15 May 2019

Jupyter Notebook Example - Historical currency exchange rates



Exchange Rates

In [6]:
# Import simple warning to ignore
import warnings
warnings.simplefilter('ignore', FutureWarning)

# import pandas
from pandas import *

# Import the plotting modules and set default format
import matplotlib
matplotlib.rcParams['axes.grid'] = True # show gridlines by default

# Show plots in the notepad
%matplotlib inline

import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,
                               AutoMinorLocator)
import matplotlib.dates as mdates

# Import LXML to read HTML and extract data
from lxml import html
import requests

# Import collections (to obtain the OrderedDict)
import collections
#import csv

# Import date time to handle the dates in the data
from datetime import datetime
In [7]:
# Constants
URLUSSTERLING= "https://www.federalreserve.gov/releases/h10/hist/dat00_uk.htm"
URLUSEURO="https://www.federalreserve.gov/releases/h10/hist/dat00_eu.htm"
DATE="Date"
RATE="Rate"
In [8]:
# Function definitions

# Obtain exchange rate from US Federal Reserve website (via supplied URL)
# Note: the direction of the exchange differs for each currency - Euro and GBP are the same direction
def get_US_exchange_rates(aURL):
    exchangerates=collections.OrderedDict()
# Get the page from the URL
    # print("Get page")
    page = requests.get(aURL)
# Make an HTML tree from the text
    # print("Make HTML page")
    tree = html.fromstring(page.content)
# The data is in a table of class="pubtables"
    r=tree.xpath("//table[@class='pubtables']/tr")
# Iterate over the selected XPATH elements
    # print("Iterate over xpath")
    for x in r:
        if x[1].text_content().strip()!="ND":
            exchangerates[datetime.strptime(x[0].text_content().strip(),"%d-%b-%y")]=float(x[1].text_content().strip())   
            # Note: the values need to be "floated" so the scaling works
    # print("Done")
    return exchangerates

# Functions to obtain scaling for Y axes, rounding up to the next 0.1, down to the next 0.1
def round_up_to_tenth(value):
    return float(int((value*10)+1))/10
def round_down_to_tenth(value):
    return float(int((value*10)-1))/10

# Get the max of the two values rounded up to the next 0.1
def round_up_to_tenth_max_of_two(value1,value2):
    result=round_up_to_tenth(value1)
    roundup2=round_up_to_tenth(value2)
    if result<roundup2:
        result=roundup2
    return result

# Get the max of the two values rounded down to the next 0.1
def round_down_to_tenth_max_of_two(value1,value2):
    result=round_down_to_tenth(value1)
    roundup2=round_down_to_tenth(value2)
    if result>roundup2:
        result=roundup2
    return result
    
In [9]:
# Get US dollar to Sterling rate
c=get_US_exchange_rates(URLUSSTERLING)
print("US rates found")
#c
US rates found
In [10]:
# Make a dataframe from the exchange rates (renaming the columns)
dfus=pandas.DataFrame([x,c[x]] for x in c)
dfus.rename(columns={0: DATE, 1: RATE}, inplace=True)
# Display the last five rows from the data frame
dfus.tail()
Out[10]:
Date Rate
4853 2019-05-06 1.3093
4854 2019-05-07 1.3052
4855 2019-05-08 1.3014
4856 2019-05-09 1.3013
4857 2019-05-10 1.3036
In [11]:
# Get the US dollar to Euro exchange rates
c=get_US_exchange_rates(URLUSEURO)
print("EU rates found")
#c
EU rates found
In [12]:
# Make a dataframe from the exchange rates (renaming the columns)
dfeu=pandas.DataFrame([x,c[x]] for x in c)
dfeu.rename(columns={0: DATE, 1: RATE}, inplace=True)
# Display the last five rows from the data frame (just to sanity check the values)
dfeu.tail()
Out[12]:
Date Rate
4854 2019-05-06 1.1197
4855 2019-05-07 1.1178
4856 2019-05-08 1.1206
4857 2019-05-09 1.1228
4858 2019-05-10 1.1241
In [13]:
# Merge the two dataframes (inner merge so there will be both exchange rates for each date)
df=merge(dfus,dfeu,on=DATE)
df.rename(columns={RATE+"_x": RATE+"_US",RATE+"_y": RATE+"_EU"}, inplace=True)
# Convert US to Euro to Euro to Sterling 
df[RATE+"_EU"]=df[RATE+"_US"]/df[RATE+"_EU"]

# Only include data from the beginning of 2016
df=df[df.Date>"01-Jan-2016"]
df.tail()
Out[13]:
Date Rate_US Rate_EU
4853 2019-05-06 1.3093 1.169331
4854 2019-05-07 1.3052 1.167651
4855 2019-05-08 1.3014 1.161342
4856 2019-05-09 1.3013 1.158978
4857 2019-05-10 1.3036 1.159683
In [14]:
# Plot exchange rates

# Set plot size
fig = plt.figure(figsize=(18, 10))

# Set the X axis format
majorLocator = MultipleLocator(100)
majorFormatter = FormatStrFormatter('%d')
years = mdates.YearLocator()   # every year
months = mdates.MonthLocator()  # every month
yearsFmt = mdates.DateFormatter('%Y')

ax = fig.add_subplot(111)
ax.format_xdata = matplotlib.dates.DateFormatter('%Y-%m-%d')

ax.xaxis.set_major_locator(years)
ax.xaxis.set_major_formatter(yearsFmt)
ax.xaxis.set_minor_locator(months)

# Get maximum and minimum values for the two two plots 
yminimum=round_down_to_tenth_max_of_two(min(df[RATE+"_US"]),min(df[RATE+"_EU"]))
ymaximum=round_up_to_tenth_max_of_two(max(df[RATE+"_US"]),max(df[RATE+"_EU"]))

# Set Y limits and ticks
plt.ylim(ymin=yminimum,ymax=ymaximum)
plt.yticks(np.arange(yminimum, ymaximum,0.1))

# Plot the two sets of exchange rates
ax.plot(df[DATE],df[RATE+"_US"],color='b')
ax.plot(df[DATE],df[RATE+"_EU"],color='r')

# Add the legend and titles
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
           ncol=2, mode="expand", borderaxespad=0.)
plt.title('Exchange Rates')
plt.xlabel('Date')
plt.ylabel('Rate', multialignment='center')
fig.autofmt_xdate()